Estrela magnética desafia teoria dos buracos negros

19-08-2010 23:17
Estrela magnética desafia teoria dos buracos negros

O magnetar desafia as atuais teorias da evolução estelar, uma vez que, segundo estas teorias, uma estrela com massa dessa magnitude deveria transformar-se em um buraco negro, e não em uma estrela magnética. [Imagem: ESO/L. Calçada]

Magnetar

Astrônomos demonstraram pela primeira vez que uma estrela magnética - um tipo incomum de estrela de nêutrons, também conhecida como magnetar - se formou a partir de uma estrela com pelo menos 40 vezes a massa do Sol.

O resultado desafia as atuais teorias da evolução estelar, uma vez que, segundo estas teorias, uma estrela com massa dessa magnitude deveria transformar-se em um buraco negro, e não em uma estrela magnética.

Isto deixa novamente em aberto uma questão fundamental: que quantidade de massa deve possuir uma estrela para dar origem a um buraco negro?

 

Estrela magnética

Uma estrela magnética, ou magnetar, é um tipo de estrela de nêutrons que possui um campo magnético extremamente forte - um trilhão de vezes mais forte que o da Terra - que se forma quando certos tipos de estrelas sofrem explosões conhecidas como supernova.

O enxame Westerlund 1 abriga uma das poucas estrelas magnéticas conhecidas na Via Láctea. Como ela pertence a este enxame, os astrônomos puderam deduzir que esta estrela magnética deve ter-se formado a partir de uma estrela com pelo menos 40 vezes a massa do Sol.

Uma vez que todas as estrelas no Westerlund 1 têm a mesma idade, a estrela que explodiu e deixou como resto uma estrela magnética deve ter tido uma vida mais curta do que as demais estrelas do enxame.

"Como o tempo de vida de uma estrela está diretamente relacionado com a sua massa - quanto mais massa tem uma estrela, mais curta é a sua vida - se medirmos a massa de qualquer das estrelas sobreviventes, saberemos com certeza que a estrela de vida mais curta que deu origem à estrela magnética deve ter tido ainda mais massa do que a massa medida," diz o coautor e líder da equipe Simon Clark. "Isto é extremamente importante, já que não existe nenhuma teoria aceita hoje sobre como se formam estes objetos extremamente magnéticos."

Teoria dos buracos negros

Por isso, os astrônomos estudaram as estrelas que pertencem ao sistema duplo W13, no Westerlund 1, pelo fato de que, num sistema em eclipse, as massas podem ser determinadas diretamente a partir do movimento das estrelas.

Comparando estas estrelas, eles descobriram que a estrela que deu origem à estrela magnética deve ter tido pelo menos 40 vezes a massa do Sol.

O que comprova, pela primeira vez, que as estrelas magnéticas podem formar-se a partir de estrelas de tão grande massa, estrelas essas que as teorias atuais afirmam que formariam buracos negros.

Até agora, era aceito pelos cientistas que estrelas com massas iniciais entre 10 e 25 massas solares formariam estrelas de nêutrons e aquelas com massas iniciais superiores a 25 massas solares dariam origem a buracos negros.

"Estas estrelas têm que se ver livres de mais de nove décimos das suas massas antes de explodirem como supernovas, porque senão darão antes origem a um buraco negro," diz o coautor Ignacio Negueruela. "Perdas de massa tão elevadas antes da explosão apresentam um grande desafio às atuais teorias da evolução estelar."

"O que levanta a questão de saber quanta massa deve ter uma estrela para que, ao colapsar, ela forme um buraco negro, uma vez que estrelas com mais de 40 massas solares não o conseguem," conclui o coautor Norbert Langer.

Fonte: Inovacaotecnologica.com.br

Voltar

Procurar no site

Meiriana Almeida© 2011 Todos os direitos reservados.